This study conducts a systematic literature review (SLR) to analyze the application of CNN in automated diagnostic systems for skin cancer using dermatoscopic images. The review examines methods, architectures, and datasets used in recent studies, focusing on their accuracy, efficiency, and limitations. It highlights the adoption of models such as GoogLeNet, ResNet-50, and YOLOv8, which have achieved accuracy levels exceeding 90%, demonstrating the capability of CNNs in distinguishing between benign and malignant lesions. The findings reveal that while CNNs offer high precision and recall, challenges remain in terms of overfitting, dataset diversity, and computational cost. This study underscores the need for larger and more balanced datasets, advanced augmentation techniques, and optimized architectures to enhance model generalizability. The research aims to contribute to the development of robust, efficient, and accessible AI-based diagnostic tools for early skin cancer detection, improving clinical decision-making and patient care.
| Word | TW | HV | Detail |
|---|---|---|---|
| 1. status | 114 words | 0.8 | systematic : 0.68, literature : 0.69, review : 0, advancements : 0.42, in : 0, skin : 0.52, cancer : 0.44, diagnosis : 0.52, using : 0.46, convolutional : 0.33, neural : 0.39, networks : 0.53, and : 0.5, dermatoscopic : 0.47, imaging : 0.44, this : 0.61, study : 0.76, conducts : 0.51, a : 0.72, slr : 0.55, to : 0.56, analyze : 0.44, the : 0.5, application : 0.51, of : 0, cnn : 0, automated : 0.58, diagnostic : 0.49, systems : 0.68, for : 0, images : 0.56, examines : 0.53, methods : 0.54, architectures : 0.57, datasets : 0.56, used : 0.47, recent : 0.44, studies : 0.8, focusing : 0.53, on : 0, their : 0.46, accuracy : 0.53, efficiency : 0, limitations : 0.59, it : 0.56, highlights : 0.42, adoption : 0.36, models : 0.44, such : 0.52, as : 0.61, googlenet : 0, resnet : 0.56, 50 : 0, yolov8 : 0, which : 0, have : 0.47, achieved : 0.43, levels : 0.44, exceeding : 0, 90 : 0, demonstrating : 0.5, capability : 0.42, cnns : 0.47, distinguishing : 0.65, between : 0.44, benign : 0, malignant : 0.43, lesions : 0.54, findings : 0.43, reveal : 0.44, that : 0.75, while : 0, offer : 0, high : 0, precision : 0.43, recall : 0.44, challenges : 0.51, remain : 0.44, terms : 0.58, overfitting : 0.42, dataset : 0.53, diversity : 0.43, computational : 0.49, cost : 0.61, underscores : 0.51, need : 0, larger : 0.44, more : 0, balanced : 0.43, advanced : 0.43, augmentation : 0.54, techniques : 0.6, optimized : 0.43, enhance : 0.44, model : 0, generalizability : 0.41, research : 0.53, aims : 0.61, contribute : 0.51, development : 0, robust : 0.5, efficient : 0, accessible : 0.49, ai : 0.56, based : 0.41, tools : 0.58, early : 0.46, detection : 0.52, improving : 0, clinical : 0, decision : 0.43, making : 0.44, patient : 0.37, care : 0.47 |
| 2. gizi | 114 words | 0.68 | systematic : 0, literature : 0.45, review : 0.47, advancements : 0, in : 0.58, skin : 0.5, cancer : 0, diagnosis : 0.41, using : 0.48, convolutional : 0.44, neural : 0, networks : 0, and : 0, dermatoscopic : 0, imaging : 0.6, this : 0.5, study : 0, conducts : 0, a : 0, slr : 0, to : 0, analyze : 0, the : 0, application : 0.45, of : 0, cnn : 0, automated : 0, diagnostic : 0.4, systems : 0, for : 0, images : 0.47, examines : 0.46, methods : 0, architectures : 0.44, datasets : 0, used : 0, recent : 0, studies : 0.46, focusing : 0.46, on : 0, their : 0.48, accuracy : 0, efficiency : 0.57, limitations : 0.56, it : 0.58, highlights : 0.57, adoption : 0.46, models : 0, such : 0, as : 0, googlenet : 0.51, resnet : 0, 50 : 0, yolov8 : 0, which : 0.48, have : 0, achieved : 0.46, levels : 0, exceeding : 0.45, 90 : 0, demonstrating : 0, capability : 0.57, cnns : 0, distinguishing : 0.54, between : 0, benign : 0.47, malignant : 0.45, lesions : 0.46, findings : 0.58, reveal : 0, that : 0, while : 0.48, offer : 0, high : 0.5, precision : 0.57, recall : 0, challenges : 0, remain : 0.47, terms : 0, overfitting : 0.45, dataset : 0, diversity : 0.57, computational : 0.44, cost : 0, underscores : 0, need : 0, larger : 0, more : 0, balanced : 0, advanced : 0, augmentation : 0.44, techniques : 0.45, optimized : 0.57, enhance : 0, model : 0, generalizability : 0.68, research : 0, aims : 0.5, contribute : 0.45, development : 0, robust : 0, efficient : 0.57, accessible : 0.45, ai : 0.58, based : 0, tools : 0, early : 0, detection : 0.45, improving : 0.57, clinical : 0.58, decision : 0.58, making : 0.47, patient : 0.46, care : 0 |
| 3. mahsiswa | 114 words | 0.75 | systematic : 0.51, literature : 0.32, review : 0.53, advancements : 0.47, in : 0, skin : 0.58, cancer : 0.43, diagnosis : 0.52, using : 0.55, convolutional : 0.47, neural : 0.43, networks : 0.33, and : 0.49, dermatoscopic : 0.54, imaging : 0.6, this : 0.6, study : 0.44, conducts : 0.42, a : 0.71, slr : 0.49, to : 0, analyze : 0.42, the : 0.49, application : 0.55, of : 0, cnn : 0, automated : 0.49, diagnostic : 0.39, systems : 0.51, for : 0, images : 0.63, examines : 0.58, methods : 0.64, architectures : 0.54, datasets : 0.58, used : 0.46, recent : 0, studies : 0.6, focusing : 0.5, on : 0, their : 0.55, accuracy : 0.5, efficiency : 0.41, limitations : 0.38, it : 0, highlights : 0.56, adoption : 0.5, models : 0.58, such : 0.42, as : 0.75, googlenet : 0, resnet : 0.43, 50 : 0, yolov8 : 0, which : 0.55, have : 0.42, achieved : 0.58, levels : 0.43, exceeding : 0.41, 90 : 0, demonstrating : 0.54, capability : 0.45, cnns : 0.46, distinguishing : 0.42, between : 0.42, benign : 0.43, malignant : 0.72, lesions : 0.6, findings : 0.5, reveal : 0.43, that : 0.42, while : 0.55, offer : 0, high : 0.58, precision : 0.32, recall : 0.43, challenges : 0.45, remain : 0.63, terms : 0.55, overfitting : 0.41, dataset : 0.51, diversity : 0.32, computational : 0.6, cost : 0.46, underscores : 0.41, need : 0, larger : 0.43, more : 0.51, balanced : 0.42, advanced : 0.42, augmentation : 0.44, techniques : 0.56, optimized : 0.41, enhance : 0.35, model : 0.5, generalizability : 0.52, research : 0.33, aims : 0.67, contribute : 0.41, development : 0, robust : 0.43, efficient : 0.41, accessible : 0.55, ai : 0.75, based : 0.55, tools : 0.44, early : 0.44, detection : 0.41, improving : 0.49, clinical : 0.5, decision : 0.33, making : 0.7, patient : 0.51, care : 0.46 |
| 4. program | 114 words | 0.64 | systematic : 0.33, literature : 0.47, review : 0.44, advancements : 0.48, in : 0, skin : 0, cancer : 0.44, diagnosis : 0.48, using : 0.45, convolutional : 0.41, neural : 0.54, networks : 0.51, and : 0, dermatoscopic : 0.54, imaging : 0.43, this : 0, study : 0, conducts : 0.42, a : 0, slr : 0.49, to : 0.55, analyze : 0, the : 0, application : 0.49, of : 0.55, cnn : 0, automated : 0.48, diagnostic : 0.47, systems : 0.43, for : 0.48, images : 0.44, examines : 0.51, methods : 0.43, architectures : 0.31, datasets : 0.42, used : 0, recent : 0.44, studies : 0, focusing : 0.42, on : 0.55, their : 0.45, accuracy : 0.51, efficiency : 0, limitations : 0.32, it : 0, highlights : 0.41, adoption : 0.35, models : 0.44, such : 0, as : 0, googlenet : 0.34, resnet : 0.44, 50 : 0, yolov8 : 0.44, which : 0, have : 0, achieved : 0, levels : 0, exceeding : 0, 90 : 0, demonstrating : 0.46, capability : 0.33, cnns : 0, distinguishing : 0.4, between : 0, benign : 0.44, malignant : 0.5, lesions : 0.43, findings : 0.42, reveal : 0.54, that : 0, while : 0, offer : 0.56, high : 0.46, precision : 0.6, recall : 0.54, challenges : 0.33, remain : 0.54, terms : 0.45, overfitting : 0.32, dataset : 0.43, diversity : 0.42, computational : 0.46, cost : 0.46, underscores : 0.49, need : 0, larger : 0.64, more : 0.43, balanced : 0.42, advanced : 0.42, augmentation : 0.45, techniques : 0, optimized : 0.48, enhance : 0.43, model : 0.45, generalizability : 0.43, research : 0.49, aims : 0, contribute : 0.33, development : 0.49, robust : 0.54, efficient : 0, accessible : 0, ai : 0, based : 0, tools : 0.45, early : 0.45, detection : 0, improving : 0.59, clinical : 0.42, decision : 0, making : 0.44, patient : 0.49, care : 0.46 |
| 5. studi | 114 words | 0.94 | systematic : 0.67, literature : 0.37, review : 0.46, advancements : 0.43, in : 0, skin : 0.54, cancer : 0, diagnosis : 0.54, using : 0.47, convolutional : 0.52, neural : 0.46, networks : 0.44, and : 0.51, dermatoscopic : 0.35, imaging : 0.45, this : 0.48, study : 0.92, conducts : 0.38, a : 0, slr : 0.56, to : 0.57, analyze : 0, the : 0.51, application : 0.43, of : 0, cnn : 0, automated : 0.37, diagnostic : 0.53, systems : 0.61, for : 0, images : 0, examines : 0.44, methods : 0.56, architectures : 0.35, datasets : 0.38, used : 0.63, recent : 0, studies : 0.94, focusing : 0.55, on : 0, their : 0.6, accuracy : 0.44, efficiency : 0.43, limitations : 0.36, it : 0.57, highlights : 0.43, adoption : 0.55, models : 0.46, such : 0.67, as : 0.57, googlenet : 0, resnet : 0.46, 50 : 0, yolov8 : 0, which : 0, have : 0, achieved : 0.44, levels : 0, exceeding : 0.54, 90 : 0, demonstrating : 0.44, capability : 0.43, cnns : 0, distinguishing : 0.62, between : 0.45, benign : 0.46, malignant : 0.44, lesions : 0.56, findings : 0.38, reveal : 0, that : 0.48, while : 0, offer : 0, high : 0, precision : 0.44, recall : 0, challenges : 0, remain : 0.46, terms : 0.47, overfitting : 0.43, dataset : 0.45, diversity : 0.54, computational : 0.5, cost : 0, underscores : 0.53, need : 0.48, larger : 0, more : 0, balanced : 0, advanced : 0.44, augmentation : 0.51, techniques : 0.53, optimized : 0.54, enhance : 0, model : 0.47, generalizability : 0.42, research : 0.44, aims : 0, contribute : 0.53, development : 0.43, robust : 0.46, efficient : 0.44, accessible : 0.53, ai : 0, based : 0.47, tools : 0.47, early : 0, detection : 0.53, improving : 0.44, clinical : 0.44, decision : 0.55, making : 0.46, patient : 0.56, care : 0 |
| 6. penndidikan | 114 words | 0.7 | systematic : 0.41, literature : 0.41, review : 0.51, advancements : 0.48, in : 0.53, skin : 0.39, cancer : 0.34, diagnosis : 0.48, using : 0.36, convolutional : 0.47, neural : 0.34, networks : 0.44, and : 0.62, dermatoscopic : 0.39, imaging : 0.32, this : 0.45, study : 0.43, conducts : 0.48, a : 0, slr : 0, to : 0, analyze : 0.41, the : 0.47, application : 0.57, of : 0, cnn : 0.62, automated : 0.3, diagnostic : 0.46, systems : 0.41, for : 0, images : 0.42, examines : 0.44, methods : 0.49, architectures : 0.28, datasets : 0.31, used : 0.56, recent : 0.51, studies : 0.4, focusing : 0.31, on : 0.53, their : 0.53, accuracy : 0.41, efficiency : 0.5, limitations : 0.58, it : 0, highlights : 0.46, adoption : 0.45, models : 0.34, such : 0, as : 0, googlenet : 0.47, resnet : 0.51, 50 : 0, yolov8 : 0, which : 0.43, have : 0.45, achieved : 0.38, levels : 0.42, exceeding : 0.48, 90 : 0, demonstrating : 0.53, capability : 0.52, cnns : 0.56, distinguishing : 0.5, between : 0.49, benign : 0.59, malignant : 0.48, lesions : 0.46, findings : 0.63, reveal : 0.42, that : 0, while : 0.36, offer : 0.43, high : 0.45, precision : 0.7, recall : 0.42, challenges : 0.46, remain : 0.48, terms : 0.43, overfitting : 0.58, dataset : 0.32, diversity : 0.48, computational : 0.47, cost : 0, underscores : 0.35, need : 0.56, larger : 0.42, more : 0.45, balanced : 0.48, advanced : 0.44, augmentation : 0.56, techniques : 0.52, optimized : 0.52, enhance : 0.57, model : 0.36, generalizability : 0.52, research : 0.41, aims : 0.45, contribute : 0.46, development : 0.4, robust : 0, efficient : 0.52, accessible : 0.46, ai : 0.53, based : 0.53, tools : 0, early : 0.43, detection : 0.52, improving : 0.42, clinical : 0.54, decision : 0.56, making : 0.34, patient : 0.57, care : 0.45 |
| 7. jasmani | 114 words | 0.76 | systematic : 0.66, literature : 0.41, review : 0, advancements : 0.51, in : 0, skin : 0.6, cancer : 0.44, diagnosis : 0.59, using : 0.56, convolutional : 0.48, neural : 0.44, networks : 0, and : 0.49, dermatoscopic : 0.5, imaging : 0.55, this : 0.46, study : 0.45, conducts : 0.42, a : 0.71, slr : 0.49, to : 0, analyze : 0.52, the : 0, application : 0.46, of : 0, cnn : 0, automated : 0.59, diagnostic : 0.57, systems : 0.52, for : 0, images : 0.37, examines : 0.61, methods : 0, architectures : 0.48, datasets : 0.49, used : 0.46, recent : 0.44, studies : 0.52, focusing : 0.49, on : 0, their : 0, accuracy : 0.51, efficiency : 0.33, limitations : 0.48, it : 0, highlights : 0.41, adoption : 0.49, models : 0, such : 0.46, as : 0.76, googlenet : 0.42, resnet : 0.54, 50 : 0, yolov8 : 0, which : 0, have : 0.46, achieved : 0.51, levels : 0, exceeding : 0.34, 90 : 0, demonstrating : 0.57, capability : 0.58, cnns : 0.46, distinguishing : 0.38, between : 0.43, benign : 0.44, malignant : 0.62, lesions : 0.52, findings : 0.51, reveal : 0.44, that : 0.46, while : 0, offer : 0, high : 0, precision : 0.42, recall : 0.44, challenges : 0.5, remain : 0.58, terms : 0.4, overfitting : 0.32, dataset : 0.51, diversity : 0.5, computational : 0.46, cost : 0.46, underscores : 0.32, need : 0, larger : 0.44, more : 0, balanced : 0.6, advanced : 0.6, augmentation : 0.64, techniques : 0.5, optimized : 0.34, enhance : 0.52, model : 0, generalizability : 0.48, research : 0.35, aims : 0.62, contribute : 0.5, development : 0.49, robust : 0.44, efficient : 0.34, accessible : 0.58, ai : 0.55, based : 0.56, tools : 0.45, early : 0.45, detection : 0.34, improving : 0.48, clinical : 0.43, decision : 0.43, making : 0.54, patient : 0.52, care : 0.46 |
| 8. kesehatan | 114 words | 0.7 | systematic : 0.45, literature : 0.38, review : 0.52, advancements : 0.56, in : 0, skin : 0.41, cancer : 0.43, diagnosis : 0.41, using : 0.44, convolutional : 0.41, neural : 0.52, networks : 0.41, and : 0, dermatoscopic : 0.46, imaging : 0.5, this : 0.41, study : 0.44, conducts : 0.41, a : 0, slr : 0.48, to : 0, analyze : 0.34, the : 0.46, application : 0.54, of : 0, cnn : 0, automated : 0.48, diagnostic : 0.45, systems : 0.42, for : 0, images : 0.44, examines : 0.52, methods : 0.5, architectures : 0.46, datasets : 0.52, used : 0.41, recent : 0.61, studies : 0.5, focusing : 0.49, on : 0, their : 0.37, accuracy : 0.41, efficiency : 0.54, limitations : 0.42, it : 0, highlights : 0.47, adoption : 0.49, models : 0.52, such : 0.57, as : 0.54, googlenet : 0.44, resnet : 0.7, 50 : 0, yolov8 : 0, which : 0.44, have : 0.45, achieved : 0.46, levels : 0.5, exceeding : 0.56, 90 : 0, demonstrating : 0.55, capability : 0.43, cnns : 0.45, distinguishing : 0.45, between : 0.59, benign : 0.52, malignant : 0.39, lesions : 0.59, findings : 0.41, reveal : 0.61, that : 0.69, while : 0.37, offer : 0.44, high : 0.45, precision : 0.56, recall : 0.52, challenges : 0.49, remain : 0.61, terms : 0.54, overfitting : 0.54, dataset : 0.55, diversity : 0.56, computational : 0.42, cost : 0.57, underscores : 0.47, need : 0.57, larger : 0.43, more : 0.45, balanced : 0.32, advanced : 0.32, augmentation : 0.49, techniques : 0.54, optimized : 0, enhance : 0.55, model : 0.44, generalizability : 0.52, research : 0.66, aims : 0.45, contribute : 0.4, development : 0.52, robust : 0.52, efficient : 0.55, accessible : 0.47, ai : 0, based : 0.37, tools : 0.44, early : 0.44, detection : 0.63, improving : 0.41, clinical : 0.41, decision : 0.57, making : 0.43, patient : 0.48, care : 0.45 |
| 9. rekreasi | 114 words | 0.78 | systematic : 0.51, literature : 0.45, review : 0.7, advancements : 0.53, in : 0, skin : 0.46, cancer : 0.53, diagnosis : 0.57, using : 0, convolutional : 0.4, neural : 0.51, networks : 0.58, and : 0, dermatoscopic : 0.6, imaging : 0.51, this : 0.46, study : 0, conducts : 0.42, a : 0, slr : 0.49, to : 0, analyze : 0.35, the : 0.49, application : 0.31, of : 0, cnn : 0, automated : 0.32, diagnostic : 0.56, systems : 0.51, for : 0.49, images : 0.51, examines : 0.62, methods : 0.51, architectures : 0.44, datasets : 0.42, used : 0.46, recent : 0.7, studies : 0.43, focusing : 0.5, on : 0, their : 0.55, accuracy : 0.5, efficiency : 0.45, limitations : 0.38, it : 0, highlights : 0.32, adoption : 0.42, models : 0.53, such : 0, as : 0, googlenet : 0.41, resnet : 0.7, 50 : 0, yolov8 : 0, which : 0, have : 0.46, achieved : 0.5, levels : 0.63, exceeding : 0.57, 90 : 0, demonstrating : 0.57, capability : 0.48, cnns : 0.46, distinguishing : 0.3, between : 0.51, benign : 0.43, malignant : 0.41, lesions : 0.51, findings : 0.33, reveal : 0.78, that : 0.46, while : 0.44, offer : 0.55, high : 0, precision : 0.56, recall : 0.7, challenges : 0.55, remain : 0.78, terms : 0.55, overfitting : 0.44, dataset : 0.43, diversity : 0.65, computational : 0.47, cost : 0, underscores : 0.44, need : 0.58, larger : 0.63, more : 0.58, balanced : 0.33, advanced : 0.33, augmentation : 0.43, techniques : 0.51, optimized : 0.32, enhance : 0.49, model : 0.44, generalizability : 0.58, research : 0.72, aims : 0.46, contribute : 0.48, development : 0.48, robust : 0.58, efficient : 0.46, accessible : 0.56, ai : 0, based : 0.44, tools : 0.44, early : 0.38, detection : 0.57, improving : 0.49, clinical : 0.33, decision : 0.58, making : 0.43, patient : 0.42, care : 0.58 |
| 10. universitas | 114 words | 0.8 | systematic : 0.52, literature : 0.58, review : 0.48, advancements : 0.49, in : 0.56, skin : 0.39, cancer : 0.59, diagnosis : 0.6, using : 0.56, convolutional : 0.55, neural : 0.55, networks : 0.62, and : 0.47, dermatoscopic : 0.56, imaging : 0.46, this : 0.56, study : 0.43, conducts : 0.45, a : 0, slr : 0.47, to : 0, analyze : 0.49, the : 0.47, application : 0.49, of : 0, cnn : 0.47, automated : 0.52, diagnostic : 0.52, systems : 0.46, for : 0.47, images : 0.59, examines : 0.54, methods : 0.49, architectures : 0.48, datasets : 0.54, used : 0.6, recent : 0.48, studies : 0.65, focusing : 0.44, on : 0.53, their : 0.51, accuracy : 0.55, efficiency : 0.41, limitations : 0.5, it : 0.53, highlights : 0.46, adoption : 0.31, models : 0.51, such : 0.45, as : 0, googlenet : 0.47, resnet : 0.55, 50 : 0, yolov8 : 0.42, which : 0.43, have : 0.56, achieved : 0.44, levels : 0.48, exceeding : 0.3, 90 : 0, demonstrating : 0.56, capability : 0.52, cnns : 0.56, distinguishing : 0.55, between : 0.41, benign : 0.42, malignant : 0.44, lesions : 0.59, findings : 0.45, reveal : 0.34, that : 0, while : 0.53, offer : 0.53, high : 0.45, precision : 0.6, recall : 0.42, challenges : 0.46, remain : 0.48, terms : 0.62, overfitting : 0.53, dataset : 0.46, diversity : 0.8, computational : 0.43, cost : 0.45, underscores : 0.76, need : 0.56, larger : 0.34, more : 0.39, balanced : 0.48, advanced : 0.44, augmentation : 0.54, techniques : 0.46, optimized : 0.42, enhance : 0.32, model : 0.43, generalizability : 0.55, research : 0.44, aims : 0.56, contribute : 0.5, development : 0.4, robust : 0.59, efficient : 0.52, accessible : 0.36, ai : 0.53, based : 0.36, tools : 0.43, early : 0.53, detection : 0.37, improving : 0.52, clinical : 0.54, decision : 0.54, making : 0.34, patient : 0.52, care : 0.39 |
| 11. rokania | 114 words | 0.7 | systematic : 0.5, literature : 0.41, review : 0.59, advancements : 0.45, in : 0, skin : 0.6, cancer : 0.54, diagnosis : 0.59, using : 0.45, convolutional : 0.63, neural : 0.44, networks : 0.42, and : 0, dermatoscopic : 0.44, imaging : 0.51, this : 0, study : 0, conducts : 0.51, a : 0, slr : 0.49, to : 0.55, analyze : 0.43, the : 0, application : 0.57, of : 0.55, cnn : 0.49, automated : 0.48, diagnostic : 0.57, systems : 0, for : 0.48, images : 0.44, examines : 0.49, methods : 0, architectures : 0.44, datasets : 0.51, used : 0, recent : 0.59, studies : 0.43, focusing : 0.49, on : 0.55, their : 0.45, accuracy : 0.51, efficiency : 0.33, limitations : 0.32, it : 0, highlights : 0.41, adoption : 0.52, models : 0.44, such : 0, as : 0, googlenet : 0.5, resnet : 0.59, 50 : 0, yolov8 : 0.44, which : 0, have : 0.46, achieved : 0.51, levels : 0, exceeding : 0.34, 90 : 0, demonstrating : 0.54, capability : 0.47, cnns : 0.46, distinguishing : 0.31, between : 0.43, benign : 0.54, malignant : 0.59, lesions : 0.36, findings : 0.51, reveal : 0.59, that : 0.46, while : 0, offer : 0.45, high : 0, precision : 0.5, recall : 0.59, challenges : 0.5, remain : 0.7, terms : 0.45, overfitting : 0.46, dataset : 0.43, diversity : 0.42, computational : 0.63, cost : 0.46, underscores : 0.32, need : 0, larger : 0.37, more : 0.43, balanced : 0.49, advanced : 0.49, augmentation : 0.55, techniques : 0.5, optimized : 0.5, enhance : 0.52, model : 0.45, generalizability : 0.58, research : 0.56, aims : 0, contribute : 0.53, development : 0.41, robust : 0.63, efficient : 0.34, accessible : 0.5, ai : 0, based : 0.45, tools : 0.45, early : 0.4, detection : 0.42, improving : 0.59, clinical : 0.49, decision : 0.35, making : 0.58, patient : 0.51, care : 0.43 |
| 12. semester | 114 words | 0.68 | systematic : 0.62, literature : 0.47, review : 0.53, advancements : 0.61, in : 0, skin : 0.51, cancer : 0.53, diagnosis : 0.41, using : 0.44, convolutional : 0.4, neural : 0.43, networks : 0.54, and : 0, dermatoscopic : 0.57, imaging : 0.42, this : 0.46, study : 0.5, conducts : 0.33, a : 0, slr : 0.54, to : 0, analyze : 0.42, the : 0.49, application : 0.41, of : 0, cnn : 0, automated : 0.46, diagnostic : 0.48, systems : 0.68, for : 0, images : 0.51, examines : 0.67, methods : 0.52, architectures : 0.44, datasets : 0.47, used : 0.58, recent : 0.63, studies : 0.64, focusing : 0.42, on : 0, their : 0.55, accuracy : 0.42, efficiency : 0.48, limitations : 0.48, it : 0, highlights : 0.41, adoption : 0.42, models : 0.51, such : 0.51, as : 0.54, googlenet : 0.46, resnet : 0.64, 50 : 0, yolov8 : 0, which : 0, have : 0.46, achieved : 0.5, levels : 0.63, exceeding : 0.57, 90 : 0, demonstrating : 0.57, capability : 0.41, cnns : 0.46, distinguishing : 0.42, between : 0.61, benign : 0.43, malignant : 0.49, lesions : 0.49, findings : 0.42, reveal : 0.53, that : 0.46, while : 0.44, offer : 0.55, high : 0, precision : 0.49, recall : 0.43, challenges : 0.48, remain : 0.53, terms : 0.66, overfitting : 0.44, dataset : 0.49, diversity : 0.52, computational : 0.47, cost : 0.58, underscores : 0.5, need : 0.58, larger : 0.53, more : 0.42, balanced : 0.42, advanced : 0.42, augmentation : 0.43, techniques : 0.48, optimized : 0.46, enhance : 0.51, model : 0.38, generalizability : 0.52, research : 0.58, aims : 0.42, contribute : 0.45, development : 0.55, robust : 0.53, efficient : 0.57, accessible : 0.55, ai : 0, based : 0.55, tools : 0.44, early : 0.44, detection : 0.46, improving : 0.41, clinical : 0, decision : 0.5, making : 0.43, patient : 0.35, care : 0.46 |
| 13. pendek | 114 words | 0.72 | systematic : 0.42, literature : 0.42, review : 0.56, advancements : 0.58, in : 0.56, skin : 0.47, cancer : 0.56, diagnosis : 0.35, using : 0.46, convolutional : 0.41, neural : 0.39, networks : 0.51, and : 0.67, dermatoscopic : 0.33, imaging : 0, this : 0, study : 0.46, conducts : 0.53, a : 0, slr : 0, to : 0, analyze : 0.54, the : 0.5, application : 0.42, of : 0, cnn : 0.5, automated : 0.43, diagnostic : 0.34, systems : 0.44, for : 0, images : 0.44, examines : 0.63, methods : 0.54, architectures : 0.41, datasets : 0.53, used : 0.61, recent : 0.56, studies : 0.54, focusing : 0, on : 0.56, their : 0.46, accuracy : 0, efficiency : 0.51, limitations : 0, it : 0, highlights : 0, adoption : 0.36, models : 0.39, such : 0, as : 0, googlenet : 0.43, resnet : 0.67, 50 : 0, yolov8 : 0, which : 0, have : 0.47, achieved : 0.53, levels : 0.56, exceeding : 0.5, 90 : 0, demonstrating : 0.41, capability : 0.42, cnns : 0.47, distinguishing : 0.33, between : 0.54, benign : 0.56, malignant : 0.43, lesions : 0.44, findings : 0.53, reveal : 0.56, that : 0, while : 0.46, offer : 0.46, high : 0, precision : 0.57, recall : 0.44, challenges : 0.6, remain : 0.44, terms : 0.46, overfitting : 0.42, dataset : 0.44, diversity : 0.35, computational : 0.41, cost : 0, underscores : 0.42, need : 0.72, larger : 0.44, more : 0.47, balanced : 0.53, advanced : 0.51, augmentation : 0.5, techniques : 0.6, optimized : 0.52, enhance : 0.64, model : 0.41, generalizability : 0.56, research : 0.53, aims : 0, contribute : 0.42, development : 0.48, robust : 0, efficient : 0.52, accessible : 0.42, ai : 0, based : 0.58, tools : 0, early : 0.46, detection : 0.5, improving : 0.43, clinical : 0.43, decision : 0.36, making : 0.44, patient : 0.59, care : 0.47 |
| 14. tahun | 114 words | 0.73 | systematic : 0.43, literature : 0.63, review : 0, advancements : 0.52, in : 0, skin : 0.48, cancer : 0.58, diagnosis : 0.54, using : 0.47, convolutional : 0.35, neural : 0.46, networks : 0.44, and : 0.51, dermatoscopic : 0.35, imaging : 0.56, this : 0.67, study : 0.6, conducts : 0.38, a : 0.73, slr : 0, to : 0.61, analyze : 0.45, the : 0.72, application : 0.43, of : 0, cnn : 0, automated : 0.48, diagnostic : 0.53, systems : 0, for : 0, images : 0.46, examines : 0.55, methods : 0.56, architectures : 0.44, datasets : 0.38, used : 0, recent : 0.46, studies : 0.56, focusing : 0.55, on : 0, their : 0.64, accuracy : 0.55, efficiency : 0.43, limitations : 0.53, it : 0.57, highlights : 0.43, adoption : 0.55, models : 0, such : 0.48, as : 0.57, googlenet : 0.44, resnet : 0.46, 50 : 0, yolov8 : 0, which : 0.47, have : 0.48, achieved : 0.55, levels : 0, exceeding : 0.44, 90 : 0, demonstrating : 0.43, capability : 0.43, cnns : 0, distinguishing : 0.49, between : 0.56, benign : 0.46, malignant : 0.54, lesions : 0.45, findings : 0.44, reveal : 0, that : 0.71, while : 0.47, offer : 0, high : 0.48, precision : 0, recall : 0.46, challenges : 0.52, remain : 0.58, terms : 0.52, overfitting : 0, dataset : 0.4, diversity : 0, computational : 0.44, cost : 0, underscores : 0.53, need : 0, larger : 0.46, more : 0, balanced : 0.55, advanced : 0.55, augmentation : 0.62, techniques : 0.69, optimized : 0.44, enhance : 0.57, model : 0, generalizability : 0.34, research : 0.44, aims : 0.48, contribute : 0.47, development : 0, robust : 0.46, efficient : 0.44, accessible : 0.43, ai : 0.57, based : 0.47, tools : 0.52, early : 0.47, detection : 0.44, improving : 0.44, clinical : 0.44, decision : 0.44, making : 0.58, patient : 0.57, care : 0.48 |
| 15. akademik | 114 words | 0.74 | systematic : 0.51, literature : 0.32, review : 0.53, advancements : 0.65, in : 0, skin : 0.46, cancer : 0.53, diagnosis : 0.46, using : 0, convolutional : 0.4, neural : 0.36, networks : 0.5, and : 0.67, dermatoscopic : 0.54, imaging : 0.51, this : 0, study : 0.44, conducts : 0.42, a : 0.74, slr : 0, to : 0, analyze : 0.64, the : 0.49, application : 0.49, of : 0, cnn : 0, automated : 0.57, diagnostic : 0.45, systems : 0.51, for : 0, images : 0.53, examines : 0.54, methods : 0.35, architectures : 0.48, datasets : 0.58, used : 0.42, recent : 0.43, studies : 0.49, focusing : 0.42, on : 0, their : 0.55, accuracy : 0.55, efficiency : 0.48, limitations : 0.38, it : 0, highlights : 0.41, adoption : 0.63, models : 0.53, such : 0, as : 0.59, googlenet : 0.41, resnet : 0.43, 50 : 0, yolov8 : 0, which : 0, have : 0.58, achieved : 0.52, levels : 0.43, exceeding : 0.46, 90 : 0, demonstrating : 0.6, capability : 0.56, cnns : 0, distinguishing : 0.46, between : 0.42, benign : 0.53, malignant : 0.49, lesions : 0.51, findings : 0.5, reveal : 0.36, that : 0.46, while : 0.44, offer : 0.44, high : 0, precision : 0.49, recall : 0.36, challenges : 0.48, remain : 0.6, terms : 0.55, overfitting : 0.48, dataset : 0.61, diversity : 0.57, computational : 0.42, cost : 0, underscores : 0.48, need : 0.42, larger : 0.53, more : 0.46, balanced : 0.58, advanced : 0.63, augmentation : 0.65, techniques : 0.48, optimized : 0.46, enhance : 0.51, model : 0.55, generalizability : 0.46, research : 0.33, aims : 0.63, contribute : 0.41, development : 0.55, robust : 0, efficient : 0.32, accessible : 0.6, ai : 0.59, based : 0.55, tools : 0, early : 0.44, detection : 0.57, improving : 0.41, clinical : 0.42, decision : 0.58, making : 0.63, patient : 0.49, care : 0.58 |
| 16. 2023 | 114 words | 0.58 | systematic : 0, literature : 0, review : 0, advancements : 0, in : 0, skin : 0, cancer : 0, diagnosis : 0, using : 0, convolutional : 0, neural : 0, networks : 0, and : 0, dermatoscopic : 0, imaging : 0, this : 0, study : 0, conducts : 0, a : 0, slr : 0, to : 0, analyze : 0, the : 0, application : 0, of : 0, cnn : 0, automated : 0, diagnostic : 0, systems : 0, for : 0, images : 0, examines : 0, methods : 0, architectures : 0, datasets : 0, used : 0, recent : 0, studies : 0, focusing : 0, on : 0, their : 0, accuracy : 0, efficiency : 0, limitations : 0, it : 0, highlights : 0, adoption : 0, models : 0, such : 0, as : 0, googlenet : 0, resnet : 0, 50 : 0.58, yolov8 : 0, which : 0, have : 0, achieved : 0, levels : 0, exceeding : 0, 90 : 0.58, demonstrating : 0, capability : 0, cnns : 0, distinguishing : 0, between : 0, benign : 0, malignant : 0, lesions : 0, findings : 0, reveal : 0, that : 0, while : 0, offer : 0, high : 0, precision : 0, recall : 0, challenges : 0, remain : 0, terms : 0, overfitting : 0, dataset : 0, diversity : 0, computational : 0, cost : 0, underscores : 0, need : 0, larger : 0, more : 0, balanced : 0, advanced : 0, augmentation : 0, techniques : 0, optimized : 0, enhance : 0, model : 0, generalizability : 0, research : 0, aims : 0, contribute : 0, development : 0, robust : 0, efficient : 0, accessible : 0, ai : 0, based : 0, tools : 0, early : 0, detection : 0, improving : 0, clinical : 0, decision : 0, making : 0, patient : 0, care : 0 |
| 17. 2024 | 114 words | 0.58 | systematic : 0, literature : 0, review : 0, advancements : 0, in : 0, skin : 0, cancer : 0, diagnosis : 0, using : 0, convolutional : 0, neural : 0, networks : 0, and : 0, dermatoscopic : 0, imaging : 0, this : 0, study : 0, conducts : 0, a : 0, slr : 0, to : 0, analyze : 0, the : 0, application : 0, of : 0, cnn : 0, automated : 0, diagnostic : 0, systems : 0, for : 0, images : 0, examines : 0, methods : 0, architectures : 0, datasets : 0, used : 0, recent : 0, studies : 0, focusing : 0, on : 0, their : 0, accuracy : 0, efficiency : 0, limitations : 0, it : 0, highlights : 0, adoption : 0, models : 0, such : 0, as : 0, googlenet : 0, resnet : 0, 50 : 0.58, yolov8 : 0, which : 0, have : 0, achieved : 0, levels : 0, exceeding : 0, 90 : 0.58, demonstrating : 0, capability : 0, cnns : 0, distinguishing : 0, between : 0, benign : 0, malignant : 0, lesions : 0, findings : 0, reveal : 0, that : 0, while : 0, offer : 0, high : 0, precision : 0, recall : 0, challenges : 0, remain : 0, terms : 0, overfitting : 0, dataset : 0, diversity : 0, computational : 0, cost : 0, underscores : 0, need : 0, larger : 0, more : 0, balanced : 0, advanced : 0, augmentation : 0, techniques : 0, optimized : 0, enhance : 0, model : 0, generalizability : 0, research : 0, aims : 0, contribute : 0, development : 0, robust : 0, efficient : 0, accessible : 0, ai : 0, based : 0, tools : 0, early : 0, detection : 0, improving : 0, clinical : 0, decision : 0, making : 0, patient : 0, care : 0 |
| 18. subtitlestatus | 114 words | 0.74 | systematic : 0.63, literature : 0.57, review : 0.33, advancements : 0.38, in : 0.52, skin : 0.59, cancer : 0.41, diagnosis : 0.4, using : 0.49, convolutional : 0.45, neural : 0.48, networks : 0.42, and : 0, dermatoscopic : 0.36, imaging : 0.4, this : 0.49, study : 0.54, conducts : 0.53, a : 0, slr : 0.64, to : 0.52, analyze : 0.48, the : 0.6, application : 0.42, of : 0, cnn : 0, automated : 0.54, diagnostic : 0.34, systems : 0.54, for : 0, images : 0.4, examines : 0.53, methods : 0.44, architectures : 0.46, datasets : 0.53, used : 0.54, recent : 0.33, studies : 0.74, focusing : 0.42, on : 0, their : 0.49, accuracy : 0.46, efficiency : 0.45, limitations : 0.55, it : 0.55, highlights : 0.44, adoption : 0.46, models : 0.46, such : 0.64, as : 0.52, googlenet : 0.35, resnet : 0.4, 50 : 0, yolov8 : 0.41, which : 0.42, have : 0.44, achieved : 0.46, levels : 0.4, exceeding : 0.29, 90 : 0, demonstrating : 0.46, capability : 0.44, cnns : 0.44, distinguishing : 0.47, between : 0.44, benign : 0.46, malignant : 0.45, lesions : 0.56, findings : 0.46, reveal : 0.4, that : 0.55, while : 0.6, offer : 0.42, high : 0.44, precision : 0.4, recall : 0.33, challenges : 0.5, remain : 0.33, terms : 0.44, overfitting : 0.47, dataset : 0.45, diversity : 0.41, computational : 0.55, cost : 0.55, underscores : 0.42, need : 0.44, larger : 0.49, more : 0.44, balanced : 0.53, advanced : 0.4, augmentation : 0.5, techniques : 0.52, optimized : 0.52, enhance : 0.4, model : 0.35, generalizability : 0.39, research : 0.42, aims : 0.38, contribute : 0.57, development : 0.38, robust : 0.57, efficient : 0.35, accessible : 0.51, ai : 0.52, based : 0.49, tools : 0.44, early : 0.42, detection : 0.45, improving : 0.39, clinical : 0.42, decision : 0.42, making : 0.41, patient : 0.54, care : 0.44 |
| 19. 2024status | 114 words | 0.61 | systematic : 0.6, literature : 0.6, review : 0, advancements : 0.41, in : 0, skin : 0.45, cancer : 0, diagnosis : 0.43, using : 0.43, convolutional : 0.34, neural : 0.42, networks : 0.32, and : 0, dermatoscopic : 0.4, imaging : 0.41, this : 0.45, study : 0.53, conducts : 0.45, a : 0, slr : 0.48, to : 0, analyze : 0.41, the : 0, application : 0.29, of : 0, cnn : 0, automated : 0.54, diagnostic : 0.37, systems : 0.58, for : 0, images : 0.34, examines : 0.32, methods : 0.33, architectures : 0.57, datasets : 0.61, used : 0.45, recent : 0.42, studies : 0.58, focusing : 0.41, on : 0, their : 0, accuracy : 0.41, efficiency : 0, limitations : 0.59, it : 0.53, highlights : 0.47, adoption : 0.41, models : 0.42, such : 0.45, as : 0.53, googlenet : 0.4, resnet : 0.51, 50 : 0.53, yolov8 : 0, which : 0, have : 0, achieved : 0, levels : 0.42, exceeding : 0, 90 : 0.53, demonstrating : 0.57, capability : 0.3, cnns : 0.45, distinguishing : 0.56, between : 0.41, benign : 0, malignant : 0.31, lesions : 0.5, findings : 0.41, reveal : 0.42, that : 0.4, while : 0, offer : 0, high : 0, precision : 0.4, recall : 0.42, challenges : 0.47, remain : 0.42, terms : 0.43, overfitting : 0.46, dataset : 0.53, diversity : 0.47, computational : 0.4, cost : 0.57, underscores : 0.46, need : 0, larger : 0, more : 0, balanced : 0.41, advanced : 0.41, augmentation : 0.52, techniques : 0.47, optimized : 0.4, enhance : 0.41, model : 0, generalizability : 0.44, research : 0.48, aims : 0.45, contribute : 0.42, development : 0.4, robust : 0.51, efficient : 0.4, accessible : 0.47, ai : 0, based : 0.43, tools : 0.43, early : 0, detection : 0.47, improving : 0, clinical : 0.41, decision : 0.41, making : 0, patient : 0.5, care : 0 |